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Abstract— We have developed a model-based processor (MBP) for a microcantilever-array sensor to detect target species in solution.  
We perform a proof-of-concept experiment, fit model parameters to the measured data and use them to develop a Gauss-Markov 
simulation. We then investigate two cases of interest, averaged deflection data and multi-channel data. For this evaluation we extract 
model parameters via a model-based estimation, perform a Gauss-Markov simulation, design the optimal MBP and apply it to 
measured experimental data. The performance of the MBP in the multi-channel case is evaluated by comparison to a “smoother” 
(averager) typically used for microcantilever signal analysis. It is shown that the MBP not only provides a significant gain (~ 80dB) in 
signal-to-noise ratio (SNR), but also consistently outperforms the smoother by 40-60 dB. Finally, we apply the processor to the 
smoothed experimental data and demonstrate its capability for chemical detection.  The MBP performs quite well, apart from a 
correctable systematic bias error. 
 

Index Terms—Microcantilever, model-based processor, sensor, signal processing 

I. INTRODUCTION 

MICROMACHINED cantilevers are powerful transducers for sensing inorganic, organic and biological molecules, since they 

readily deflect in the presence of a very small number of target molecules (nanomolar to femtomolar concentrations).[1, 2]  The 

number of potential target chemicals is large, ranging from DNA [3, 4] to explosives [5], suggesting that cantilevers may be 

useful in defense, medicine, drug discovery, and environmental monitoring.  Microcantilevers have already been demonstrated 

to be capable of recognizing antibodies [6] and nerve agent products such as hydrofluoric acid in solution [2], for example.  

Many other cantilever-based sensors have been developed recently [7-9]; their function and application are reviewed 

elsewhere.[10, 11] 

A limitation on cantilever sensors in liquid, however, is that their signal-to-noise ratio (SNR) is low, often 5:1 or smaller.  

SNR is expected to be significantly lower in many operational environments of interest.  Further, the reliability of fielded 

cantilever sensors ultimately depends on their being incorporated into arrays, which increase system complexity and can make 

response interpretation difficult.  Fortunately, these difficulties are exactly the type that can be overcome with effective signal 

extraction techniques such as the model-based approach.   Control levers and cantilevers functionalized in complementary 

schemes have previously been employed in arrays to improve the overall sensor sensitivity and selectivity. [1, 12, 13]  Here, a 

model-based signal extraction system for cantilever arrays is described that takes advantage of multiple redundant signals 

available to the signal processing algorithm.  This approach improves the SNR and helps provide a physical basis for 

interpreting the deflection signal.  

 
Funding for this work came from an NA-22 Exploratory Research Program managed by David Dye.  This work was performed under the auspices of the 

Department of Energy by the University of California/Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.   
All authors are with the University of California, Lawrence Livermore National Laboratory, L-234, Livermore, CA 94550, USA (phone:  925-422-7725; fax:  

925-422-2041;  e-mail:   tringe2@llnl.gov.) 
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 This paper discusses the development of a model-based processor (MBP) designed to extract cantilever deflection signals in 

low SNR environments. In Sec. II, we develop the cantilever sensor model used in the MBP along with the physical chemistry 

required to predict the surface concentration and stress in the subsequent section. Next, the experiment to validate the models 

and develop the MBP is briefly discussed in Sec. IV. The approach to model-based signal processing follows in Sec. V as well 

as the details of constructing the corresponding processor for this application. The MBP performance is evaluated and applied to 

both synthesized and experimental measurement data. 

II. MICROCANTILEVER SENSORS 
 

Micromachined cantilevers can function as detection devices when one side is fabricated to be chemically distinct from the 

other, as shown in Fig. 1.  Functionalization can be accomplished, for example, by evaporating a thin (~10’s of nm) film of 

metal such as Au on the top of the chip, then immersing the cantilever chip in a “probe” chemical that will bind preferentially to 

the Au thin film.  The lever acts as a sensor when it is exposed to a second “target” chemical that reacts with the probe, since the 

reaction causes a free energy change that induces stress at the cantilever surface. Differential surface stress, σ∆  (=σ + -σ − , from 

Fig. 1), in turn, induces a deflection of the cantilever that can be measured optically or electronically.  In this paper, we describe 

results of experiments with Au-coated cantilevers exposed to 2-mercaptoethanol (C2H6OS), a small sulfur-terminated molecule 

with high affinity for Au. We note that the signal-processing approach developed here should apply well to cantilevers that are 

functionalized to promote the binding of other chemicals or biological molecules.    

The total free energy change of the cantilever surface, ∆G, can be decomposed into four contributions: ∆GCANT, the 

mechanical energy change associated with bending the cantilever, ∆GPOLY, free energy change resulting from macromolecular 

conformational entropy and non-electrostatic interactions, ∆GOSM, free energy change from osmotic pressure of counter-ions 

near the surface of the cantilever, and ∆GELEC, the electrostatic free energy change[3]. 

 
∆G = ∆GCANT + ∆GPOLY + ∆GOSM + ∆GELEC          (1) 
 
The free energy change is related to ∆σ, the surface stress difference between top and bottom side of the cantilever by: 
 

( ) ( ) ( ) / At G t t M∆σ = ∆ Γ            (2) 
 
where ∆G has units of J/mole and is the change in the sum of all of the contributions to the free energy of the surface of the 

cantilever, Γ(t)  is the surface concentration of the species of interest (typically in molecules per cm2) on the surface of the 

cantilever [14, 15]and MA is Avogadro’s number.  Sulfur-terminated molecules bind preferentially to the Au-coated side of the 

cantilever.   

The surface concentration of the interacting molecules, Γ(t), is estimated using Langmuir kinetics.  The equation describing 

first-order Langmuir kinetics has the following form: 

 

m a x '

m a x

( )
( )( ) 1 ( )a

td
tk c t k t

d t

⎛ ⎞Γ
⎜ ⎟Γ ⎛ ⎞Γ⎝ ⎠ = − −⎜ ⎟Γ⎝ ⎠

d Γ                                                  (3) 

 
Here c(t) is the bulk concentration of the target molecule in solution in moles per liter, or [M], ka is the adsorption rate constant 

in [M]-1 s-1, kd
’ (= kd/ Γmax ) is the desorption rate constant in cm2 molecule-1 s-1.  Γmax is the maximum possible surface 
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concentration of the species of interest in molecules cm-2, which is approached asymptotically at equilibrium as the solution 

concentration becomes very large.   Finally, differential surface stress, from (2), in the cantilever induces a deflection, ∆z(t) , 

using a variant of Stoney’s equation[16]: 

( ) ( ) ( )
2

2

3 1l
z t t

E
ν

σ
δ
−

∆ = ∆ ,                                    (4) 

 
where E is the Young’s modulus, ν is the Poisson’s ratio, and  l and δ are the cantilever length and thickness, respectively. 

The terms multiplying the differential surface stress are system-specific constants and can be combined and expressed as a single 

coefficient,  

 

∆z(t)=β∆σ(t)                                             (5) 

 

Here, β=3l2(1-ν)/(Eδ2).                                        (6) 

 
The proportionality constant that relates cantilever deflection, ∆z(t), to induced surface stress due to surface coverage, ∆σ(t), can 

be written equivalently in terms of the spring constant of the rectangular cantilever, krect,= Eδ3W/(4l3)[17]: 

 

)(1
4

)1(3)( t
kl

Wtz i
rect

c
i σδν

∆
−

=∆        (7) 

where W is the width of the cantilever. Correspondingly, the coefficient to the surface stress, β, given above can be re-written as, 

rectlk
W

4
)1(3 δνβ −

=     .                                   (8) 

 
The equations describing the cantilever deflection (4-8) assume that the strain is small, an assumption that is valid for all of the 

deflections encountered in our experiments.   

III. PHYSICAL CHEMISTRY AND THERMAL EFFECTS 
In this section, we describe how we predict changes in surface stress as a function of surface loading.   The analysis also 

begins with Stoney’s equation (4), which states that the deflection of the cantilever is directly proportional to the difference in 

surface stress on the cantilever surface.   This stress differential constitutes the signal.  We follow the approach as described by 

Lavrik et al.[15] to relate the surface stress difference to the surface coverage and the free energy of adsorption (2).  What 

remains is to develop physical models for Γ(t) and ∆G. 

 When incorporating the rate of change of the dimensionless surface concentration, Γ(t)/Γmax, for the MBP, we employ a 

modified form of (3) by re-defining a rate of desorption, , wheredk '
maxd dk k= Γ  and has units of s-1.  With this new definition 

(3) becomes: 

 

max

max max

( )
( ) ( )( ) 1a

td
tk c t k

dt

⎛ ⎞Γ
⎜ ⎟Γ ⎛ ⎞Γ Γ⎝ ⎠ = − −⎜ ⎟Γ Γ⎝ ⎠

d
t                                                       (9) 
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All terms are as described above in (3) with the exception of . Note that Langmuir kinetic equations have been presented in 

various forms in the literature. This form, (9), was chosen to enable a one-to-one comparison between rate constants predicted 

by the MBP presented here and those reported in the literature [18-20].   

dk

Once the input signal, a bulk concentration c0 of target molecules, is turned off, we fit the desorption process with an nth order 

Langmuir desorption model:       

max

max

( )
( )

i
n

i
d

td
tk

dt

⎛ ⎞Γ
⎜ ⎟Γ ⎛ ⎞Γ⎝ ⎠ = − ⎜ ⎟Γ⎝ ⎠

                                              (10)    

       

The fit to the actual desorption data revealed a third-order dependence on the surface concentration, or n = 3 (see Section IV:  

Experimental Results). Desorption processes are typically modeled with a first or second order model to extract kd, and the 

preference for a third order model is somewhat surprising.   The higher order behavior could indicate a cooperative desorption 

process, but it is more likely due to a distribution of activation energies associated with the desorption process [21].  

 Also included in the model-based processor is the cantilever response to thermal effects, deflections due to differences in the 

coefficient of thermal expansion of Au and Si. Thermally-induced deflections are added directly to chemically-induced 

deflections to obtain the total cantilever deflection. From [22], 

T
k

lz
Si

SiAuT ∆
+

∆=∆
1

2
23

δ
δδ

α

                                              (11)    
                
where ∆zT is the normal (z-direction) deflection of the free end of the cantilever, ∆T is the temperature difference,  ∆α  is the 

difference in thermal expansion coefficients (αSi − αAu),  l is the cantilever length,  δ is the thickness of the Si or Au, and k1 is 

k1 = 4 + 6
δAu

δSi

+ 4(
δAu

δSi

)2 +
EAu

ESi

(1−ν Si)
(1−νAu)

(
δAu

δSi

)3 +
ESi

EAu

(1−ν Au)
(1−ν Si)

(
δSi

δAu

)

                                              (12)  

Here E is Young’s modulus for Si or Au, and ν is Poisson’s ratio for Si or Au.  Note the Poisson effect has been included in k1, 

and that the gold layer is relatively thin so the final term dominates the expression for k1.        

   The models describing the physics of the cantilever bending and the surface chemistry were built into the model-based 

signal processor, and a parameter estimator was developed to fit these coupled equations predicting the optimal values for ka, kd 

and Γmax.  With these parameters specified, we calculate the free energy for adsorption, ln a
ads

d

kG RT
k

⎛ ⎞
∆ = − ⎜

⎝ ⎠
⎟ [18, 20].  For any 

target species, we can then fit to find the appropriate adsorption parameters.  

 

IV. EXPERIMENTAL RESULTS 
A prototype cantilever detection system from Veeco Instruments, Inc., was used for these experiments. In this system, a single 

Si chip (fabricated by IBM) with eight identical cantilevers is loaded into a 50 microliter flow cell, and cantilever deflections are 

measured optically using a focused light beam from a super-luminescent diode reflected into a position-sensitive detector by 



UCRL-JRNL-212326 5

each cantilever.  Levers are interrogated in series, with an overall measurement frequency of ~2 Hz for all eight levers. Each Si 

cantilever is 500 microns long, 100 microns wide and 1 micron thick; levers are parallel to one another on the chip, spaced by 

100 microns.  The top side of the levers (as depicted in Fig. 1) was coated with 20 nm of evaporated Au on a 2.5 nm Ti adhesion 

layer, and the whole chip was cleaned with piranha (3:1  H2SO4:30% H2O2) immediately before being loaded into a water-filled 

50 microliter flow cell.  

During the experiment, levers were exposed to a thermal pulse, then a chemical stimulus in the form of a c0 = 0.014 M 

concentration of 2-mercaptoethanol in pure water, and finally a second heat pulse. Except for brief pauses to exchange syringes 

in the syringe pump, the entire experiment was performed at a constant flow rate of 20 microliter/min.  Results of this 

experiment are shown in Fig. 2:  the average deflection of 6 of 8 cantilevers (2 others were damaged), and simultaneous 

temperature measurements from a thermocouple placed in the flow of fluid exiting the cell.   Similar experiments were repeated 

several times, and the data shown are typical of the magnitude and time evolution of the deflection and temperature signals. 

V. MODEL-BASED SIGNAL PROCESSING 
A.  Design for cantilever arrays 
In this section we develop the model-based approach, first for the generic model sets and then for the specific embellishment 

discussed previously.  We start the section with the development of an approximate Gauss-Markov model, which can be used to 

capture the general cantilever signal enhancement problem.  We then apply it to our specific microcantilever array sensor 

system.  

If nonlinear dynamics (differential equations) describe the system under investigation, then an approximate representation of 

the deterministic process and associated measurement is easily captured in state-space form. State-space is simply converting an 

nth-order set of coupled differential equations into an equivalent set of n first-order differential equations. With this 

accomplished, we obtain the general nonlinear vector functional relations defined by the process and measurement models, 

 
[ ]

[ ]

( ) , ;                                                 [process (state)]

( ) , ;                                                 [measurement]

x t a x u

y t c x u

θ

θ

=

=

&
     (13)  

where  is the x xN -dimensional state vector; is the -dimensional measurement. u is a known input, and θ is a generic 

model parameter. If these processes are contaminated by additive zero-mean, Gaussian noise, then the approximate Gauss-

Markov model evolves as 

y yN

 
[ ]

[ ]

( ) , ; +w(t)                                                [process (state)]

( ) , ; +v(t)                                                 [measurement]

x t a x u

y t c x u

θ

θ

=

=

&
    (14)   

Here  are the [ ],  c[ ]a ⋅ ⋅ xN -dimensional vector process function and yN -dimensional measurement functions, respectively, for 

the process noise given by  and the corresponding measurement noise, .  is the Gaussian 

distribution specified by mean and covariance.    With this representation in mind, we can now define the generic cantilever 

signal enhancement problem as: 

~ (0, )www N R ~ (0, )vvv N R ( , )N ⋅ ⋅
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GIVEN a set of noisy displacement measurements, { }( )y t with known inputs, { }( )u t ,and parameters, { }θ , specified by 

the approximate Gauss-Markov model of (14),  FIND the best (minimum error variance) estimate of the displacement and 
surface concentrations, , respectively.  ˆ ˆ( ),  x(t)y t

 
The solution to this problem can be derived in a wide variety of approaches.  Here, we will use the common Bayesian approach 

[23].  We summarize the algorithm as: 

 

      (15)   
[ ]

[ ]

                        MODEL-BASED PROCESSOR ALGORITHM

ˆ ˆ( | 1) , ;                                               [State Prediction]

ˆ ˆ( | 1) , ;                                               

x t t a x u

y t t c x u

θ

θ

− =

− =

&

[Measurement Prediction]

ˆ( ) ( ) ( | 1)                                            [Innovation or Residual] 

ˆ ˆ( | ) ( | 1) ( ) ( )                                  [Correction]

t y t y t t

x t t x t t K t t

ε

ε

= − −

= − +

where ( )K t  is the gain of the processor, which must be calculated from the underlying process statistics (see [23] for details).  

Here we have discretized time and measured it in units of the time step, so the time at the step before t is t-1. 

For the cantilever array problem, we must convert the physical relations, (2-12), into the state-space form above. We chose to 

solve the differential equation and incorporate the resulting relations into the measurement (cantilever sensor) model. For the 

state, we modeled the free energy as a piecewise constant function, converted it to discrete-time using the first difference 

approximation and excited it with zero-mean, white Gaussian (process) noise creating a random walk model for this parameter. 

Therefore, we start with defining the state vector as :x G= ∆  and the deflection measurement y := ∆z; then we obtain the 

following relations.  From (14), the surface concentration relation becomes simply 

 
( ) ( 1)           [Process Model]x t x t= −                                              (16)  

 
The measurement model is more complicated. We must first solve for the physical variables to obtain the generic form of (11); 
therefore, we have from (2-12) that 
 
yi(t)= ∆zi

c(t)+∆zT(t)  [Measurement Model]                             (17)    
 
where ∆zi

c(t) is the chemically-induced deflection, different for different cantilevers.  ∆zT(t) thermal deflection, assumed to be 

the same for all cantilevers. In addition to accounting for the adsorption-desorption kinetics, we also developed an 

approximation, based on the stirred tank reactor, to estimate the target concentration as a function of time under continuous flow 

conditions.  In the experiments presented in this communication the applied chemical signal was a step function, i.e., a constant 

concentration at was turned on at time, tON, and off at time tOFF.[24]  The dynamic surface concentration, Γ(t), has the following 

form:  
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max

max

max

( ) / 0,

( )( ) / {1 exp[ ( ( ) )( )]},
( ) /

1( ) / ,
2 ( )
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a d ON ON OFF
a d

OFF
d OFF

t t

c tt k c t k t t
c t k k

t t
k t t

Γ Γ = <

⎛ ⎞
Γ Γ = − − + − ≤ ≤⎜ ⎟+⎝ ⎠

Γ Γ = >
−

t

t t t

t

t

         (18) 

 As described above, the differential surface stress on the cantilever is a function of the surface concentration and free energy 
 
     ( ) ( ) ( ) ( ) ( )t t G t t xσ∆ = Γ ∆ = Γ                  (19)            
 
The deflection of the -lever is weighted by the Stoney equation with a specific value of β, from (5): thi
 
∆zi

c(t) = βi∆σ(t), for βi := 3l2(1-ν)/(Eiδi
2)                               (20) 

 
where βi is the -Stoney coefficient with cantilever modulus, , with lever length and thickness, l and δthi iE i, respectively, and ν 

is Poisson’s ratio for silicon.  Here we allow different values of β for the different cantilevers to account for the well-known 

variations in cantilever properties, something that has been investigated extensively in the context of AFM cantilever spring 

constants.  In principle, variations in either E  [25]or δ [26] could cause appreciable variations in β; in practice, the variation of 

the Young’s modulus of silicon is much less than the variation of δ2.   Fortunately, it is the same combination (E δ2) that enters 

both β and the leading term of k1, so a single fitting parameter suffices to account for variations in both.  In practice we have 

taken this parameter to be Ei. Thus, we obtain the measurement equation at the -cantilever as thi
 
yi(t) = βiΓ(t)x(t) + ∆zT(t)                                    (21) 
 
Finally, assuming that both noise sources are Gaussian random processes (as before), then the result is a time-varying Gauss-

Markov (not approximate due to linearity) multi-channel cantilever model defined by 

x(t) = x(t-1) + w(t-1) 

yi(t) = βiΓ(t)x(t) + ∆zT(t) + νi(t)                                 (22) 

 
for ; .  As before, we can develop the model-based processor based on this Gauss-Markov 
model. First, we define the signal enhancement problem in terms of the cantilever models as: 

~ (0, )www N R ~ (0, )vvv N R

 
GIVEN a set of noisy -vector displacement measurements, yN { }( )ty with known -vector inputs, {uN }( )tu and 

parameters, { }kθ specified by the Gauss-Markov model of (14),  FIND the best (minimum error variance) estimate of the 

displacement and -vector surface concentrations, xN ˆ ˆ( | 1),  ( | )t t t t−y x , respectively.  
 
The model-based algorithm to solve this problem using the specified models is: 
 
CANTILEVER ARRAY MODEL-BASED PROCESSOR ALGORITHM 
 

)11(ˆ)1(ˆ −−=− ttxttx            [Surface Concentration Prediction] 

)(ˆ)1(ˆ)()1(ˆ tttxttty ii τβ +−Γ=−       [Displacement Prediction]              (23) 

)1(ˆ)()( −−= ttytyt iiiε           [Innovation or Residual] 
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)()()11(ˆ)1(ˆ ttkttxttx ε+−−=−       [Surface Concentration Correction] 

                 
This completes the development of the MBP algorithm for cantilever sensor arrays. Note that once this framework is developed, 

it is straightforward to define other problems of high interest (e.g. detection problems[27]).  

 B.  Model-based processor performance evaluation 

In this section we discuss the performance of the model-based processor (MBP) for signal enhancement of an L-element 

cantilever sensor array. The basic approach we take for MBP performance evaluation is illustrated in Fig. 3. After obtaining the 

average parameters by performing the parameter estimation, a Gauss-Markov simulation was designed to generate synthesized 

cantilever deflection measurements using the model discussed in the previous section. Once synthesized at a particular signal-to-

noise ratio (SNR), the processors were applied to the data and their performance analyzed based on the “truth” deflections 

generated by a noise-free simulation.  Metrics are applied to evaluate and compare performance. We discuss the various steps in 

this procedure. 

1) Parameter Estimation.  The basic approach we use is to first “parameterize” the cantilever array model by performing 

parameter estimation (nonlinear least squares method) on the raw deflection measurements to extract the critical absorption, 

desorption and maximum concentration, that is, { }max( ), ( ), ( ) ; 1, ,i a dk i k i i i Lθ = Γ = L .  The parameter estimator we 

employed was a nonlinear least-squares criterion using the Nelder-Meade polytope search algorithm[28]. This algorithm is based 

on minimizing 

 
2

1

ˆmin  ( ) ( ; )   for   ( ; ) : ( ) ( ; )
t

i

N

i i
t

iJ t t y t y
θ

tθ ε θ ε θ θ
=

= =∑ − ,      (24)  

 
where the estimated or filtered cantilever measurement at the -lever is given by thi
 

)();();(ˆ tztzty Tc
ii ∆+∆= θθ                                (25) 

  

Once these parameters are extracted from the data, they are averaged to give { }, ,a d maxk k= Γθ . These are the parameters that 

are used in the Gauss-Markov simulation model.  

 We tested the parameter estimator with raw experimental deflection data (Fig. 2) to determine the appropriate physical 

parameters for each lever on a single chip.   Modeling results are shown in Fig. 4 where we see the “fitted” deflection responses 

compared to the measured. It is clear that the extracted parameters reasonably predict the filtered cantilever response of (25). 

Next we investigate the development of the simulator. 

2)  Gauss-Markov Model Simulation.  For our problem we chose to use ( )G t∆ as an unknown but constant parameter 

(
( ) 0d G t

dt
∆

= ) and the nonlinear deflection and known temperature measurement; that is, defining 

 
( ) ( 1) ( 1)G t G t w t∆ = ∆ − + −     (26) 

 
with cantilever array measurement 
 
yi(t) = βiΓ(t)∆G(t)+∆zT(t)+νi(t)    (27) 
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where  is the free energy at the surface, and are the additive, zero-mean, Gaussian noise processes with 

covariances, 

( )G t∆ ,  iw v

wwR  and L L
vvR ×∈ R  with diagonals, . We assume that the measurement uncertainty is 

uncorrelated producing the diagonal matrix. Each of the cantilevers has a different value of β creating a set of Stoney 

coefficients, β →β

2 ( );   1, ,v i i Lσ = L

i, one representing each of the individual lever properties. A typical set of cantilever simulation data is shown 

in Fig. 5 where we used a –20 dB SNR defined by:  

 
2

,
2

( )
;   1, ,

( )
z true

i
v

i
SNR i L

i
σ

σ
∆= = L                              (28)  

where ∆ztrue is the “true” deflection available from the Gauss-Markov simulation and σ2
∆z,true is its variance. Once the noisy 

deflection measurements are synthesized, then the processors are applied to extract the “true” deflections. We chose to evaluate 

two methods:  smoothing processor and model-based processor. The smoothing processor is simply a running window average 

that is equivalent to a low-pass filtering operation. This smoothing is an example of a typical approach taken by scientists in this 

field. The MBP is the “optimal” (approximately) solution to this problem. We used SSPACK_PC, a commercial model-based 

signal processing package[29] in MATLAB[30], to perform these calculations.  Table 1 gives values parameters for the 

cantilever used in the calculations. 

C.  MBP application to single channel cantilever data  

The MBP was developed using the cantilever measurement model of (29) with the average parameter estimates of Table II.  

Concerning the values given in Table II, it is helpful to review results obtained in related chemical systems.  For example,  ka is 

1.3×10-2 s-1 for CH3 (CH2)15 S/Au (10-3 M) in ethanol, relatively constant between concentrations of 10-3 and 10-5 M [31]; our 

average value of 4.6×10-3 s-1 for ka for 2-mercaptoethanol, C2H6OS, (1.4×10-2 M) in water is smaller, possibly because of 

different kinetic mechanisms that are active for this smaller molecule at higher concentrations, or because of solvent differences.  

Unlike the longer CH3 (CH2)15 S, for example, 2-mercaptoethanol does not form well-ordered monolayers on Au.  For 20-base 

pair thiolated DNA on Au in buffer, kd is 4.7×10-3 s-1, and Γmax = 1.3×1013 molecule/cm2 [1].  Our value of 4.8×10-4 s-1 for kd is 

smaller, again possibly because of molecular size or solvent differences.  Γmax for C2H6OS is larger (1.3×1015 molecule/cm2), 

likely because the much smaller C2H6OS is better able to concentrate on the Au surface. 

   In this section we discuss the application of the MBP to simulated cantilever array measurement data at a variety of signal-

to-noise ratios. We first show the results of the MBP design for the –20 dB SNR case, then summarize the results at a variety of 

signal-to-noise ratios to evaluate its overall performance. The MBP design is based not only on the average parameter estimates 

(see Table II), but also using a smoothed temperature data estimate, , to be more realistic in performance evaluation. We 

expect this processor to provide an outstanding performance, once tuned[23]. In fact, the results of applying it to the –20 dB data 

indicate an approximate optimal performance, since the underlying prediction errors or innovations associated with each lever 

are statistically zero-mean (mean less than bound) and white (less than 5% of the points outside the bound) as shown in Fig. 6 

and Table III.  To pass in Table III, simulated data must be zero-mean  and white.  Table III also shows the aggregated 

weighted-sum squared residual (WSSR) statistic indicating optimal performance. The results of processing the –20 dB SNR 

deflection data are shown in Fig. 7 for each lever. The results are shown by comparing the “true” (synthesized) deflection 

compared to the smoothed and MBP estimates. It is clear from the figure that the MBP performs extremely well. 

)(ˆ tzT∆
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 Next we investigate the overall performance of both the standard smoother/averager and the MBP on synthesized data sets. In 

order to quantitatively evaluate the performance of the processors individually, we calculate the residual deflection errors 

defined by 

 
)(ˆ)(:)(~

, tztztz c
i

c
itrue

c
i ∆−∆=∆  

   (29)  
where  is the true (noise free) deflection at the -lever and  is the filtered or estimated deflections as shown 

for the –20 dB case in Fig. 7. Once the error is estimated at each lever, its associated mean and variance can be calculated and 

used for further analysis.  We define the processor output gain as the final metric given by: 

)(, tz c
itrue∆ thi )(ˆ tz c

i∆
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∆
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L .   (30)  

 
This ratio represents the enhancement provided by each processor. The smaller the residual error variance ( ), the higher the 

, providing a reasonable metric. Averaging these statistics over the cantilever array gives a measure of overall 

processing gain. 

2
~z∆σ

outSNR

 We performed a set of simulations at 0, -20, -40 dB SNRin with the typical run outputs shown in the previous figures for the –

20 dB case. The results for each run are summarized in Table IV. Here we see that output SNR produced by both processors are 

respectable with a significant gain in enhancement; however, it is clear that the MBP consistently demonstrates superior 

performance with an overall average enhancement of 80 dB and enhancement gain over the Smoother of 38, 43 and 60 dB, 

respectively. The MBP is insensitive at these SNRs to the measurement noise variance changes yielding identical performance at 

each level. By contrast, the Smoother performance clearly deteriorates as the input SNR decreases. The MBP performance will 

also deteriorate with decreases in input SNR, but not at realistic experimental levels. This demonstrates outstanding performance 

for multi-channel cantilever arrays on these simulated data sets. Next we apply the process to the measured array data. 

D. Model-based processor application to multichannel cantilever data 

 In this section we developed MBP for two cases: (1) average deflection data and an averaged cantilever model; and (2) multi-

channel deflection data. First we averaged the six cantilever deflection data to obtain the complete deflection response over the 

entire array.  We next designed the MBP:  we first obtained the parameter estimates, then applied those parameters to the 

processor.  Finally, we developed the multi-channel processor using the same approach:  estimating the individual cantilever 

parameters, taking their average and calculating the appropriate parameters for the multi-channel model. In both cases we 

performed simulations first to develop the optimal MBP. 

 The average cantilever model was developed by performing the model-based parameter estimation obtaining the adsorption, 

desorption and free energy, then developing the corresponding Gauss-Markov simulation model and corresponding MBP.  The 

raw and simulated data (0 dB) are shown in Fig. 8a and 8b.  It is clear that the measurement noise severely distorts the desired 

deflection signal. The enhanced MBP output (deflection) enhancement is shown in Fig. 8c along with the corresponding 

optimality tests in 8d, where it is apparent that the performance of the processor is indeed optimal:  the corresponding 

innovations are zero-mean and white.  

 Next we applied the MBP to the actual deflection and temperature profile data shown in Fig. 9a and 9b after “tuning” the 

noise covariance parameters ( vvR ) with the results shown in Fig. 9d.  Here we see that the MBP is capable of tracking the 
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averaged cantilever deflection data quite well; however, the performance is suboptimal, since the innovation, although small, is 

not white. Generally, the MBP performance for this data is quite good. 

Next we developed the MBP for the multi-channel case using the same model-based approach:  simulation and application.  

We used the average model parameters developed over the entire cantilever array data set with the nonlinear least-squares 

model-based parameter estimator, then applied it to the raw cantilever data to investigate its performance. We again used the 

MBP with the free energy as our piecewise constant parameter (state) and the nonlinear cantilever array model with six 

elements. We used the smoothed estimate of the temperature profile in our estimator as in the synthesized data case. We also 

used the estimated the Stoney coefficients and the average parameter estimates as before.  

The measured cantilever data, MBP estimates and the corresponding errors or innovations are shown in Fig. 10. Since the 

innovations are not zero-mean and white, the processor is not optimal; however, the results are quite reasonable except for the 

systematic bias error (constant) in the estimate. The dynamics appear to be captured by the model especially well in cantilever 

five. The offset can be adjusted by selecting various combinations of elements in the Rvv measurement noise covariance matrix, 

but this may be better suited to an adaptive implementation of the processor that will be pursued in future work. From the figure 

we note that the dynamics of the individual levers (on-set and off-sets) are close to the expected dynamics.  

VI. CONCLUSION 

We have developed a successful model-based approach to the microcantilever array signal enhancement problem. 

Experimental data were obtained from a multi-cantilever detection system and quantitatively analyzed with mathematical tools 

from physical chemistry and solid state physics.  We incorporated the results of this analysis directly into the generic signal 

processing approach. A proof-of-concept solution was created to parameterize our theoretical model, enabling us to test an 

average model. This model was then used to develop the MBP for enhancing noisy cantilever measurements. We investigated 

data averaged over the array and the multi-channel cases.  

Through simulations with additive Gaussian noise at SNR of 0, -20, and –40 dB, we demonstrated the ability of the processor 

to extract the cantilever deflection response with a large improvement in signal gain (~ 80 dB). We compared the performance of 

the processor to that of a “smoother” (averager) at several differnent signal-to-noise ratios, and the MBP demonstrated superior 

performance with an overall average processing gain of ~ 40-60 dB over the averager.  Finally, we applied the MBP to noisy, 

smoothed (averaged) cantilever data and demonstrated that the processor could perform quite well except for a bias error, which 

is easily corrected. 

To demonstrate the full utility of the MBP for chemical sensing of low levels of signature chemicals, necessary next steps are 

(1) verify the physical models used in this study for a variety of solvents and target molecules  (2) make use of control levers, 

and (3) extend the experimental library to include low concentrations of chemical targets of practical interest. 
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Fig. 2.  Mean deflection of the cantilevers due to temperature and chemical stimuli; deflection signal is averaged over six cantilevers.  The temperature change 
was measured in the fluid exiting the cell. 
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Fig. 3.  Model-Based Processor Performance Evaluation: Simulation, Processing and Analysis.  This approach allows direct comparison of the results of the 
smoothing processor and the MBP. 
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Fig. 4.  Parameter Estimator Results: Predicted response (solid line) compared to raw deflection measurements (dotted line).  The concentration, c0, is 0.014 M, 2-

mercaptoethanol in water. 
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Fig. 5:  Noisy Cantilever Deflection Measurement Gauss Markov Simulation (-20 dB SNR).   In each chart, the solid green center line is the mean deflection, 
while the red dashed lines are the twice the standard deviation from the mean. 
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Fig. 6.  Optimality Tests: Cantilever Array Zero-Mean/Whiteness and Weighted-Sum Squared Residual (WSSR) Statistic. 
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Fig. 7.  MBP and Smoother Enhancement of the Noisy (-20 dB SNR) Synthesized Deflection Measurements: True Deflection (with temperature data), Smoothed 
and MBP Estimates. 
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Fig. 8.  MBP Design for Simulated Average Cantilever Data (0 dB SNR): (a) True measurement. (b) Simulated Gauss-Markov deflection measurement with 

bounds. (c) Enhanced deflection (MBP output). (d) Optimality tests (zero-mean/whiteness) results. 
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Fig. 9.  Average Cantilever MBP Application to Measured Deflection Data. (a) Raw deflection data. (b) Raw temperature profile data. (c) Model-based parameter 

estimation fit and parameters. (d) Model-based enhancement including temperature. 
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Fig. 10. MBP of Experimental Cantilever Array Data: Raw, Enhanced (MBP) and Residual (Innovation) results for each lever. 
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Table I:  Parameters Used in Model-based Processor 
Parameter Value 
E, Young’s modulus for Si cantilever, Pa 1.5×1011

ν, Poisson’s ratio for Si cantilever, unitless 0.23 
l, cantilever length, µm 500 
W, cantilever width, µm 100 
δ, cantilever thickness, µm 1 

Table II:  Cantilever Parameter Estimation for 2-Mercaptotethanol C2H6OS (1.4×10-2 M) in Water 

CANTILEVER ka(10-3)(s-1) kd(10-4)(s-1) 
Γmax(1015 
molecules cm-2)  

1 4.66 5.14 1.27 

 2 4.61 5.58 1.32 

 3 4.47 4.36 1.35 

4 4.61 4.75 1.26 

 5 4.34 4.41 1.21 

 6 4.79 4.76 1.16 

AVERAGE 4.6 4.8 1.3 

 
 
 
Table III.  MBP Optimality Zero-Mean/Whiteness Test Results 

Cantilever Mean Bound Whiteness (% out) Pass/Fail 
No. 1 7.64 16.7 4.25 P 
No. 2 7.81 16.6 4.48 P 
No. 3 11.6 16.9 4.39 P 
No. 4 8.98 16.5 3.59 P 
No. 5 1.93 16.8 4.51 P 
No. 6 4.16 16.6 4.34 P 
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Table IV: MBP/Smoother Performance Analysis 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

SNRin

(dB) 
0 0 -20 -20 -40 -40 

Lever SNRo 

(Smt) 
SNRo 

(MBP) 
SNRo 

(Smt) 
SNRo 

(MBP) 
SNRo 

(Smt) 
SNRo 

(MBP) 
       

No. 1 44.0 79.9 36.5 79.9 17.6 79.9 
No. 2 46.0 87.2 40.2 87.2 26.3 87.2 
No. 3 44.9 83.3 44.5 83.3 23.5 83.3 
No. 4 45.2 80.3 37.9 80.3 17.3 80.3 
No. 5 44.8 83.8 39.8 83.8 22.9 83.8 
No. 6 45.9 82.4 40.0 82.4 24.0 82.4 

       
AVG 45.1 82.8 39.8 82.8 21.9 82.8 
Avg 
Gain 

 +37.7  + 43.0  +60.9 

 
 
 


